High-level Reinforcement Learning in Strategy Games

*
Christopher Amato
Department of Computer Science
University of Massachusetts
Amherst, MA 01003 USA
camato@cs.umass.edu

ABSTRACT

Video games provide a rich testbed for artificial intelligence
methods. In particular, creating automated opponents that
perform well in strategy games is a difficult task. For in-
stance, human players rapidly discover and exploit the weak-
nesses of hard coded strategies. To build better strategies,
we suggest a reinforcement learning approach for learning
a policy that switches between high-level strategies. These
strategies are chosen based on different game situations and
a fixed opponent strategy. Our learning agents are able to
rapidly adapt to fixed opponents and improve deficiencies in
the hard coded strategies, as the results demonstrate.

Categories and Subject Descriptors
1.2.6 [Artificial Intelligence]: Learning

General Terms

Algorithms, Experimentation

Keywords

Virtual agents, Reinforcement Learning, Video games

1. INTRODUCTION

Most multi-player video games are distributed with a built
in artificial intelligence player that allows humans to play
against the computer. Building such players is a compli-
cated task because the Al player has to be challenging, but
the game still has to be winnable by the human. Modern
games often supply a rich environment with a multitude of
world features that may be important and possess a rich
set of possible decisions that players must make. Because
creating an Al system for a video game does not require con-
siderable hardware resources, yet may require contributions
from many different research areas in order to produce a re-
alistic system, it has been proposed as an accessible testbed
for building human-level AI systems [5].

*This work was completed while both authors were at Mi-
crosoft Research in Redmond, WA

Cite as: High-level Reinforcement Learning in Strategy Games, Christo-
pher Amato and Guy Shani, Proc. of 9th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2010),
van der Hoek, Kaminka, Lespérance, Luck and Sen (eds.), May, 10-14,
2010, Toronto, Canada, pp. 75-82

Copyright (©) 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

75

*

Guy Shani
Department of Computer Science
Ben-Gurion University
Beer-Sheva 84105 Israel
shanigu@bgu.ac.il

Strategy games are an important and difficult subclass of
video games. In games such as Warcraft * and Civilization?
players build cities, train workers and military units, and
interact with other human or AT players. The goal of these
games is to make the best use of limited resources to defeat
the opposing players. The large state space and action set,
uncertainty about game conditions as well as multiple coop-
erative and competitive agents make strategy games realistic
and challenging.

In this paper, we use Civilization IV as our testbed. Civi-
lization IV is an extremely complex strategy game in which
players evolve a culture through the ages, starting in 4000BC
and ending in 2050AD. Each player becomes a nation leader
and over a series of turns, cities must be built and man-
aged, armies created and technologies researched. Besides
the large scope of the game, what sets Civilization apart is
that there are many paths to victory. These include the tra-
ditional military domination as well as cultural, diplomatic,
technological and time victories. The creators of Civiliza-
tion IV made a considerable effort to build very different Al
strategies that attempt to win the game by achieving one or
more of these goals.

Perhaps the most obvious way to model an Al player in
a strategy game is to use a game-theoretic model. In this
paper, however, we choose to take a single agent approach
which learns a best response strategy against a fixed player.
We believe that it is a reasonable assumption due to both
anecdotal and experimental evidence showing that humans
often play fixed or slowly changing strategies. Many humans
approach complex multi-stage games by playing a reasonable
strategy and will only make isolated changes when a failure
is recognized. Even in simple games, it has been shown that
humans often consider simplistic models of their opponents
such as that they are playing against a fixed policy [9]. This
results in strategies that may not be responsive to changes in
opponents policies. In more complex games, such as strategy
games, it is likely that humans will play equally or even
less complex policies. While multiagent (game-theoretic)
learning may model these situations more accurately, single
agent learning may perform well due to increased scalability
and the ability to capture the important aspects of these
games.

Hence, we use a single agent reinforcement learning ap-
proach [10] to learn a policy for switching high-level strate-
gies under the fixed opponent strategy assumption. Our set

'www.blizzard.com/us/war3/
Zwww.civiv.com/

Figure 1: Screenshot of troops and cities in Civiliza-
tion IV

of candidate strategies is the set of pre-designed world leader
personalities, which may be war-seeking, culture-oriented,
or expansion-directed. Assuming that each such personality
is favorable in different circumstances, we learn when it is
best to use which personality. This approach allows us to
leverage the existing low-level knowledge and learn a higher
quality policy.

We perform this learning based on state features such as
the difference in military strength between the player and
opponent(s), the amount of unoccupied land remaining etc.
This allows the agent to learn a policy by evaluating the
different strategies given the current game state and choos-
ing the one that performs best in each given situation. We
experiment with a set of basic reinforcement learning meth-
ods [11], such as @Q-learning [13] and model-based Dyna-Q
[10], using a fixed set of state features. We demonstrate that
even in this complicated game, reinforcement learning can
be used to improve hard-coded AI players.

The remainder of the paper is organized as follows. We
first provide background on Civilization IV as well as our
learning framework which is based on Markov decision pro-
cesses (MDPs) and reinforcement learning. We then discuss
our approach for using reinforcement learning in Civilization
IV. In section 4, we describe our experimental results, show-
ing that performance can be increased after a small number
of learning episodes when playing against a fixed policy. Fi-
nally, we supply an overview of the related work on Al in
video games and then conclude.

2. BACKGROUND

We first discuss the Civilization IV game, and then pro-
vide an overview of reinforcement learning in general and
Markov decision processes in particular.

2.1 Civilization IV

The testbed we chose was the turn-based strategy game
Civilization IV. As mentioned above, Civilization IV is a
very large and complex game where players become a nation
leader and evolve their civilization in an attempt to defeat a
single or multiple enemies. The player interacts with other

76

Figure 2: Screenshot of a negotiation in Civilization
v

leaders through war, commerce, technology exchange and
pacts. Movement of troops can be seen in Figure 1, while a
common negotiation can be seen in Figure 2.

In Civilization, the player has a very large set of possible
actions. For example the player can build one of dozens
of buildings and units in each of his cities, research a huge
tree of technologies, move units between cities and attack
the opponent cities. In this paper we choose to take a high-
level view of the game, allowing the game to automatically
handle these low-level decisions, and focus only on choosing
a high-level strategy for winning the game.

The built-in Al strategies for Civilization IV are created
in the form of historic leader personalities. For example,
Genghis Khan is war-seeking, while Gandhi attempts to win
through cultural or diplomatic leadership. These leaders
have two types of differences. First, as we mentioned previ-
ously, each leader has a different personality that emphasizes
a different strategy for winning the game. Second, leaders
have different sets of bonuses, such as special units that only
they can create, reduced maintenance costs for buildings,
or stronger army units. The designers of the game have
matched each personality with appropriate bonuses that are
beneficial under the personality strategy. The game design-
ers have made these choices in order to give players a feel of
these historic leaders, but as these strategies follow a “per-
sonality”, they may not be the best method for winning the
game. While imperfect, we note that these built-in AI lead-
ers are extremely hard to win against. In fact, the humble
authors admit that they were unable to win the game af-
ter many hours of gameplay at the mediocre “Prince” level,
which we experimented with.

It is reasonable that different situations in the game may
require different personalities to handle. For example, when
the world is still unexplored, it may be beneficiary to use a
personality that emphasizes growth, and when the opponent
becomes weak it may be appropriate to become war-seeking,
build an army and crush its civilization. While the initial
bonuses are fixed, humans often change their personality and
thus their strategy for winning the game given the conditions
they observe. Therefore, our approach seeks to create a more

intelligent, human-like opponent.

While the specific details of the world state in Civilization
IV are often hidden from the players, through the so-called
fog of war, many global details are available. The player can
at any time view a set of scores for military power, techno-
logical advancement, population and so forth for each of the
other players. These scores can help the player to under-
stand its relative weaknesses and strengths and make edu-
cated decisions. We make use only of these available world
features, thus creating “fair” automated players that oper-
ate under the same limitations that a human has. The game
also synthesizes a score from all these various components,
which we will use as the basis for rewarding the player.

One of the main reasons that Civilization IV was cho-
sen was because the game developers have published a large
portion of the game source code as an SDK?. This SDK al-
lows adding new civilizations, units, and buildings as well as
changing the gameplay and Al behavior. We used this pub-
licly available SDK to interact with the game and implement
our various learning procedures.

2.2 Markov decision processes

For learning, we choose to use Markov Decision Processes
(MDPs) [6] as the general framework. MDPs are a com-
mon method for modeling sequential decision-making with
stochastic actions. We learn a policy for an MDP through
reinforcement learning approaches.

We represent the learning problem as an MDP, defined as
a tuple (S, A, P, R) with:

e S, a finite set of states with designated initial state sg.
e A, a finite set of actions.

e P, a set of state transition probabilities: P(s’|s,a),
the probability of transitioning from state s to s’ when
action a is taken by the agent.

e R, areward function: R(s,a), a real-valued immediate
reward for taking action a in state s.

An MDP unfolds over a series of steps. At each step, the
agent observes the current state, s, chooses an action, a,
and then receives an immediate reward that depends on the
state and action, R(s,a). The agent begins in the initial
state sog, which is assumed to be known. The state transi-
tions according to the distribution P as given above and the
process continues. The goal is to find a policy, which is a
mapping, 7, from states to actions, that maximizes the sum
of rewards over the steps of the problem. In this paper, we
consider the infinite horizon problem which unfolds over an
infinite number of steps. To maintain a finite sum, a dis-
count factor v € [0,1) is used. The value of a policy 7 at
state s can be calculated as:

V™ (s) = R(s,m(s)) +7) P(s'|s,m(s))V7(s)

Where 7 : S — A is a mapping from states to actions ac-
cording to policy .

3 www firaxis.com/downloads/Patch/CvGameCoreDLL_v161.zip

77

2.3 Reinforcement learning

When we do not know the transition and reward models,
we can use reinforcement learning methods to learn a policy.
Reinforcement learning is an approach to learn policies for
agents acting in an unknown stochastic world, observing the
states that occur and the rewards that are given at each step
[11].

2.3.1 Q-learning

The first approach we use is Q-learning [13]. This method
updates the value of a state-action pair after the action has
been taken in the state and an immediate reward has been
received. Values of state-action pairs, Q(s,a) are learned
because the resulting policy is more easily recoverable than
learning the values of states alone, V(s). @Q-learning will
converge to an optimal value function under conditions of
sufficiently visiting each state-action pair, but often requires
many learning episodes to do so [14].

When an action a is taken in state s, the value of a state-
action pair, or Q-value, is updated as

Q(s,a) = Q(s,a) + o (r +1Q(s") — Q(s,a))

where a € [0,1] is the learning rate, r is reward that is
observed, v is the discount factor, s’ is the next state, and
Q(s) = max, Q(s,a).

The actions are taken according to some exploration pol-
icy, such as an e-greedy approach. This method chooses the
action that maximizes the @-value with probability 1—e and
a random action with probability e. These policies are cho-
sen in order to balance the exploration of uncertain states
and actions with the exploitation of the current policy. It
is also common in a stationary environment to decay the
exploration rate (¢) as a policy is learned as another way to
begin to deal with this tradeoff.

In multiagent domains, @-learning is no longer guaran-
teed to converge due to the environment no longer being
stationary. Nevertheless, it has been shown to be effective
[8, 12]. When the other players use fixed policies, they can be
considered part of the environment and the problem again
becomes an MDP. In this case, the @Q-learner will learn a
best response policy. Thus, @-learning is optimal in the
case when the other players do not change policies and can
be robust to situations in which they do.

2.3.2 Model-based Q-learning

Q@-learning is a model-free method. That is, it learns a
policy directly, without first obtaining the model parameters
— the transition and reward functions. An alternative is to
use a model-based method that learns the model parameters
and uses the model definition to learn a policy.

Learning a model consists of learning the transition prob-
abilities and reward values for each state and action. If a
good model is learned, an optimal policy can be found by
planning methods because the model parameters are now
known. Rather than first building a correct model and then
finding a policy from that model, we learn the model and
the Q-values at the same time with the Dyna-Q approach
[10].

Dyna-Q can learn the Q-values more quickly than Q-
learning by using the model to generate learning experiences
and does not require a model to be fully learned before a
policy can be found. Thus, the agent learns both the Q-

Algorithm 1: Dyna-Q
input : current Q-values, @, immediate reward r,
state s and action a
output: updated Q-values, @
begin
Q5,0) — Q(s,a) + alr +1Q(s',a') — Q(s,)
P(s'|s,a) «+ updatePAverage(s,a, s')
R(s,a) < updateRAverage(s, a)
for i =0 to numlter do
s« randomPreviouslySeensS ()
a’ «— randomPreviously TakenA(s")
s« sampleFromModel(s', a")
r’ «— fromModel(s',a")
Qs',) — Qs', a)+a(r+1Q(s", ") ~Q(s',)
return @
end

values and the model through acting in the environment.
The model is then used to simulate the environment and
the @Q-values are updated accordingly. As the model be-
comes a better representation of the problem, the @Q-values
will be more accurately updated and convergence will oc-
cur more quickly. The Dyna-Q algorithm operates exactly
like @Q-learning, except for the addition of model learning
and an offline planning phase at each step. These additions
allow learning to take place without an explicit model learn-
ing phase because the model and Q-values are learned si-
multaneously. Nevertheless, the inclusion of a model allows
learning to be hastened.

Dyna-Q is shown in Algorithm 1. First the regular Q-
learning update takes place and the probability and reward
models are updated as averages given the new information.
That is, the transition probability is the number of times s’
occurs after being in state s and taking action a divided by
the number times the agent was in state s and chose action
a:

P(s'|s,a) = count(s,a,s")/count(s,a)

The reward value is the average of the rewards received in
state s after choosing action a:

R(s,a) = (count(s,a) * R(s,a) +r)/(count(s,a) + 1)

The model sampling occurs in the for loop. For some des-
ignated number of iterations the model is sampled and the
Q-values are updated accordingly. This is done by first uni-
formly choosing a state that has been previously encoun-
tered, s’. An action, a’, that has been taken in s’ is then
uniformly chosen and based on the transition model, a re-
sulting state s” is sampled. The reward for s’ and a’ is then
found from the reward model. These values are then used
to update the appropriate Q-values.

2.3.3 Factored state representations

In many environments states can be described as an as-
signment to state features [4]. If there is some independence
between feature transitions or rewards, this representation
can provide significant power in learning over fewer episodes.
However, assuming independence between features that are
in fact dependent can cause us to learn an improper model
and thus an imperfect policy.

78

Assuming that features transition independently, we can
write:

P(s' =< fi,, fu > |s,0) = [[P(fi]s,0)
i=1

where P(f|s,a) is the probability of feature f; after action
a has been taken in state s.

The transition functions for each one of these features
can then be learned independently of the others in Dyna-Q.
That is, rather than learning P(s’|s,a), we learn separate
functions for each P(f/|s,a). This reduces the transition
model parameters from |S|?|A| to |F||S||A|, where |F| is
the number of features. Thus, we require fewer learning
episodes in order to learn the model parameters, leading to
faster learning.

3. A REINFORCEMENT LEARNING
APPROACH FOR CIVILIZATION IV

The basis of our approach is to learn a policy for switching
between high-level strategies. During each game, the agent
observes certain current game information. Based on this
information, the agent chooses a strategy — a leader per-
sonality — for the next step. At this next step, the agent
receives a reward, again observes the new game information
and chooses a strategy again. If the game is played again,
the learning continues. Below, we consider a game with only
two players, but the approach could be generalized to any
number of players.

3.1 Learning in Civilization

As we explain above, we focus here on the question of
properly selecting a strategy given the current game condi-
tions. This is done by learning the value of playing each of
the different leader personalities in different game scenarios.
Given these values, we can choose the personality with the
highest value in the current condition. This approach can
produce an Al system that performs better against a human
opponent and allow game developers to automatically mix
a set of fixed strategies in order to form a higher quality
policy.

We assume here that a human will play a fixed strategy
(however complicated), as was discussed previously. Even
against a fixed opponent, it is crucial to learn quickly. While
we assume the game will be played repeatedly, we cannot
expect a human to play hundreds of games while waiting for
the Al to improve. Thus, we develop an approach that does
not require a large number of training episodes in order to
produce an improved policy.

3.2 Modeling Civilization as an MDP

Because choosing a high-level strategy may require sev-
eral game turns to bear fruit, we allow strategy switching
(an MDP step) only every few turns. The new strategy is
allowed to run for this fixed number of turns, after which we
observe the outcome. In our case, a decision is made every
10 turns, resulting in at most 46 steps per game. The details
of how the states, actions and rewards are represented are
explained below.

It should be noted that these parameters were chosen
based on educated guesses after playing the game, but ex-
tensive analysis was not conducted. It is quite likely that

these could be improved, which would also improve the per-
formance of the resulting algorithms. Our goal was to choose
a simple and general model that is not dependent on “tweak-
ing” of the parameters.

3.2.1 State space

We define the state space with a set of four state features:
population difference, land difference, military power differ-
ence and remaining land. We call these features fi, f2, f3
and fi and calculate their values based on the scores pro-
vided in the game. These features were chosen because they
provide very general information about the relative status
of a civilization. Also, each player has access to these values
and can compute the resulting features. Because we consider
games with two players, the difference features are therefore
the difference in score between the two players, while the
remaining land is found by subtracting the land currently
occupied by both players from the total amount of land in
the game.

States are then discretized over the possible values. For
population, land and power differences, the feature was given
one of three values based on the difference in scores. That
is

2, if diff > 10
fi=<1, if —10 < diff < 10
0, if diff <—10

where diff represents the difference in value between the
agent and the opponent. For example, if the difference in
power between the players is 26, f3 = 2. The remaining land
feature has three values as well, determined by whether there
is over 50% of land remaining, between 20% and 50% or less
than 20%. Again, this discretization was chose to be general,
but increased performance could likely be achieved by using
different intervals for each feature. Combining these features
produces 81 possible states.

3.2.2 Action space

As we explain above, an action is a choice of a new strat-
egy for making low-level decisions. We use the set of built-in
personalities as the allowed strategies. We limited our ac-
tion space to four leaders: George Washington, Frederick II,
Mahatma Gandhi and Genghis Kahn. These leaders were
chosen because they possess each of the eight possible per-
sonality traits and have diverse preferences for war, build-
ings etc. Washington is Financial and Organized, Frederick
is Creative and Philosophical, Gandhi is Industrious and
Spiritual and Genghis Kahn is Aggressive and Expansive.
These traits, along with other heuristics, define preferences
for each leader. These leaders can be seen as they appear in
the game in Figure 3.

3.2.3 Reward model

We define the immediate reward given at each step based
on the score provided by the game. That is, the immediate
reward is the difference in total score between the agents.
This measures how the agent is playing in relation to the
opponent. While it is possible to lose the game while having
a higher score than the opponent, the score is obviously
highly correlated with the final outcome of the game. This
reward was chosen in pursuit of our goal to produce a player

79

Figure 3: Leaders in Civilization IV (clockwise from
top left): Frederick II, Mahatma Gandhi, Genghis
Kahn and George Washington

that adapts its policy and wins more often. We define the
difference in score as

thisStepScore = myTotalScore — yourTotal Score

3.3 Learning approaches

In this paper we used basic reinforcement learning meth-
ods. This was done to demonstrate the applicability of re-
inforcement learning to the problem of strategy selection.
Thus, it is likely that more advanced methods will provide
better results. The approaches we used were those discussed
above: (Q-learning, Dyna-Q, and Dyna-Q over the factored
state space. The code implementation for these methods,
which provides a framework for reinforcement learning in
Civilization IV is available at:
http://www.cs.umass.edu/~camato/Civ4.html

4. EXPERIMENTS

To demonstrate the applicability of our approaches, we
performed learning against a single AT opponent playing the
fixed policy provided by the game. We seek to determine
if the game policies can be improved by our learning meth-
ods. We note again that at the “Prince” level which we
experimented with, winning against the built-in Al is very
challenging. Each game was played in the small “duel” sized
map with the standard game speed, starting era, water level
and climate. Our learners started with a random policy
and learned over 50 and 100 training episodes. 500 test-
ing episodes were then used to determine the quality of the
learned policy.

The parameters used in each of our learning algorithms
were o = 0.25, v = 0.9, ¢ = 0.2 for training, while ¢ =
0.0 was used for testing. For both the flat and factored
versions of Dyna-Q, 25 steps of learning from the model

were used at each step of the problem. It is also worth
noting that all of these methods used very little computation
time. The most computationally intensive method, the flat
model-based Dyna-Q, added only about one second at each
problem step. Thus, all of these learning methods would be
transparent to an end user playing the game.

For the experiments, we provide results for playing Freder-
ick against Washington and Gandhi against Genghis Kahn.
We selected these pairs because they represent very differ-
ent approaches for winning the game. In addition to the
preferences and characteristics of the leaders, initial bonuses
are given in the form of beginning technology and unique
troops. These bonuses remain fixed even when the person-
ality changes.

To determine the improvement over these fixed strategies
in the game, we first determined the percentage of games
each leader would win against the chosen opponent. This
standard policy is referred to as fized in the figures and ta-
bles below, while a random policy which randomly chooses a
leader personality at each step is called random. These were
run 1000 times to improve the precision of the resulting es-
timates. To determine if each learner’s policy is better than
that of the fixed or random policies, we compare them using
a one-tailed Welch’s t-test. This test accounts for possibly
different variances, but due to large sample sizes, similar
tests will likely have similar values.

Frederick vs. Washington

When playing Frederick against Washington without any
learning, Frederick won 54.1% of the time. A random policy
started as Frederick won 51.2% of the time. Figure 4 shows
the results of the different learning methods after 50 and
100 steps of learning and the mean number of games won
by the fixed and random policies. Confidence intervals of
95% are also included in each bar of the figure. Table 1
describes the statistical significance of these results. The t-
values using Welch’s t-test are provided for both the random
and fixed polices along with the one-tailed p-values. These
p-values are rounded up using standard intervals to increase
readability. We consider results equal to or below 0.05 to be
statistically significant and as a result, present them in bold
font.

The figure shows the percentage of games won by Q-
learning (Q), model-based learning (M) and learning with
the factored model (FM) after 50 and 100 learning episodes.
In each case, the percentage won after learning was higher
than that of the fixed and random policies. When statisti-
cal significance is also considered, model learning for both 50
and 100 episodes as well as the factored model after both 50
and 100 episodes are statistically significantly higher than
the random policy with 95% probability or higher. When
compared to the fixed policy, model-based learning in both
cases and the factored model after 100 episodes are statisti-
cally significantly higher. The other results are suggestive,
but may require more learning before becoming significantly
better than the fixed policy played by the game AT.

The results are in line with common expectations. The
model allows the learner to improve at a faster rate, permit-
ting the model-based learner to perform well with a small
number of learning episodes. Likewise, the factored model
learner will learn even more quickly, but because the inde-
pendence assumption does not capture some aspects of the

80

0.7

0.65

0.6
0.55
Fixed
05 Random
0.45
552 0.606 0616 0.578 0592
0.4

0.
Q50

»

Q100 M50 M 100 FM 50 FM 100

Figure 4: Results of Frederick learning to play
against Washington

Random Fixed
l [t-value [p-value [t-value [p-value ‘

Q50 1.46 0.10 0.40 0.35
Q100 1.24 0.15 0.18 0.45
M50 3.48 0.0005 2.41 0.01
M100 3.86 0.0001 2.79 0.005
FM50 2.43 0.01 1.36 0.1
FM100 2.95 0.005 1.88 0.05

Table 1: The significance of results for Frederick vs.
Washington. Results significant at the 0.05 level or
beyond are in bold.

state space that are captured by the flat model learner, so-
lution quality is slightly lower.

The resulting policies that are learned display many ten-
dencies that one would expect in the game. For instance,
where there is a power advantage for the learner, Genghis
Kahn will often be chosen. When the game is even and al-
most all the land has been taken, Washington is often cho-
sen to stabilize the economy of the civilization and provide
a balanced endgame.

Gandhi vs. Genghis Kahn

In these games, the fixed policy won 73.1% of the games,
while a random policy won 77.6%. The high winning per-
centage is likely because Gandhi’s bonuses are stronger, but
we can see that Gandhi’s personality is often not the best
one to play in this situation. Figure 5 shows the results of
each of the learners after 50 and 100 learning episodes as
well as the mean number of games won by the fixed and
random policies. We also provide 95% confidence intervals
for each case. Table 2 provides the statistical significance of
these results.

Here, the model learning (M) after both 50 and 100 learn-
ing episodes and the factored model learner (FM) after both
50 and 100 episodes are statistically significantly better than
the random policy. All learners are statistically significantly
better than the fixed policy. This is partly due to the fact
that the learners are initialized with a random policy. These

0.95

0.9

0.85
0.8
Random
0.75
Fixed
0.7
824 0874 0842 0854

0.65

J
Q50 Q100 M50 M 100 FM 50 FM 100

Figure 5: Results of Gandhi learning to play against
Genghis Kahn

Random Fixed
l [t-value [p-value [t-value [p-value ‘

Q50 1.63 0.10 3.61 0.0005
Q100 0.99 0.20 2.94 0.005
M50 2.23 0.05 4.21 0.00005
M100 4.93 0.00001 7.00 <0.000001
FM50 3.14 0.001 5.15 <0.000001
FM100 3.79 0.0001 5.82 <0.000001

Table 2: The significance of results for Gandhi vs.
Genghis Kahn. Results significant at the 0.05 level
or beyond are in bold.

results show that even a high quality initial policy can be
quickly improved with reinforcement learning.

The trends of the different learners are similar to above.
The Q-learner performs the worst, while the model-based
learners learn more quickly and win more often. The fac-
tored model learner wins more often after 50 episodes, but
after 100, the flat model-based learner overtakes it. Again,
this is likely due to the fact that the features do not com-
pletely characterize the state space.

In the resulting policies, many choices are the same as
above, but many are different. Genghis Kahn is sometimes
chosen when there is a power advantage, but he is chosen
more often when there are advantages in land and popula-
tion, but when power is even or lower than the opponent.
Presumably, this is to increase the power of the civilization
to better attack or defend in the future. Also, Washing-
ton is chosen in a large number of instances. These include
when there is a power advantage or when there is little land
remaining, but the learner is leading in other areas. This
seems similar to the above case when Washington is used at
the end of the game to strengthen the civilization.

S. RELATED WORK

Many researchers have studied methods for planning and
learning in video games in general and strategy games in
particular. We review below some related work in planning,
learning and game theoretic approaches for Al systems in

81

video games.

Researchers have used planning to explore the resource
gathering problem of a Warcraft II open source clone, War-
gus [2]. The authors seek to minimize the number of steps
needed to reach certain resource goals (such as gathering 100
gold, or gathering jointly 50 gold and 50 trees, or training 10
troops). Classical planning is used with the ability to “lock”
resources such as workers (peasants) to prevent conflicting
plans. Issues such as action durations and different numbers
of agents are also addressed by alternating between planning
and scheduling, which orders the actions to allow for concur-
rency. Subgoals (such as increasing the amount of a specific
resource) and other heuristics (such as adding peasants) are
used to speed up planning and increase resource production.
The approach performs about as well as a human and bet-
ter than the other planning algorithms used in a set of small
Wargus scenarios.

Planning was also used to look at a simplified assault sce-
nario in which groups of troops need to defeat other troops
or an enemy base, again in the Wargus game [1]. Defending
your own base or sequential waves of attack are not consid-
ered. Online planning is done at each decision epoch, which
is defined as until the troops become idle again. Planning is
done at the group level (assuming groups of troops for the
player and opponent) using UCT, a Monte-carlo planning al-
gorithm. Only two actions are used, “join group” or “attack.”
Hand tuned parameters were used for estimated action dura-
tions and determining the effectiveness of actions. On some
small scenarios, their planner does better than heuristics and
can perform better than a human player.

Another approach also explored the army deployment prob-
lem in real-time strategy games, but from a game-theoretic
point of view [7]. The authors assume a set of strategies is
given (such as quickly attacking, only defending, etc.) and
that the player and opponent will choose from these. All
pairs of strategies are simulated to determine the success
of each, and these simulated values are used to construct a
payoff matrix. A Nash equilibrium strategy is then found.
Some heuristics are used to make the simulations run faster
and again, the troops are separated into groups. This ap-
proach was tested against each strategy type as well as a
random player. The Nash equilibrium strategy did about
as well as one fixed strategy (purely defending), but better
than the rest.

One of the few learning approaches in video games used
reinforcement learning to learn a policy in a fighting game
called Tao Feng [3]. Starting from a random policy, a small
number of macro-actions were used (such as punching for-
ward and back, kicking forward and back, blocking for 10
steps, moving in different directions, etc.) and a policy was
learned using a variant of Q-learning called Sarsa [10]. A
linear function approximator was used with features that
consisted of the distance to opponent, whether obstacles
were present to the sides, the previous opponent action and
whether the player was in the air, standing or crouching. Af-
ter a large number of trials (over 3000), a policy was learned
that could defeat the built-in AT

Reinforcement learning has also been used in Civilization
IV [15]. In this paper, @-learning was used to learn how to
place new cities in the map. The learning took place based
on states that consisted of the x and y coordinates of current
cities as well as the order they were built. When cities were

generated by the standard game Al, the learner could place
them on any land square. The reward for city placement
was defined as the difference in game score since placing the
last city. In a shortened version of the game (50 turns), the
learner could outperform the standard Al at placing up to
two cities. This took place after a large number of training
episodes (over 2000).

Comparison with our work

Our approach shares some similarities with earlier work, but
seeks a different goal. Unlike the planning approaches for
strategy games, our approach tackles the complete problem
(rather than just resource gathering or attacking). We also
use learning to adapt a policy based on the conditions of the
game and the strategy of an opponent. In contrast to game
theoretic approaches, we learn to switch the strategy during
the game instead of choosing a fixed policy for the whole
game. And unlike previous learning methods, we tackle the
more complex problem of a complete strategy game. Even
though we are solving this complex problem, we also strive
to learn with many fewer learning episodes. Also, while the
learning used in [15] may not generalize to other games or
even changes in a given game map, ours can generalize to
many different game scenarios and problem types.

6. CONCLUSION

In this paper, we studied a reinforcement learning ap-
proach for switching high-level behaviors in a complex strat-
egy game, Civilization IV, assuming an opponent is play-
ing a fixed strategy. Three different learners are used: Q-
learning, model-based Q-learning (Dyna-Q) and a factored
model version of Dyna-Q. These approaches were able to
quickly learn higher quality policies, often in as little as 50
training episodes. We showed that these policies could win
more often than both random policies and the hand-tuned
(fixed) policy of the game Al

This shows that reinforcement learning can provide pow-
erful tools which allow agents to adapt and improve quickly,
even in complex scenarios such as strategy games. These
techniques are very general and may also be applicable in
other domains. Example domains include the stock market
or algorithm portfolios where expert strategies are available
or low level policy details cannot be changed.

In the future, we are interested in extending this line of
research in several ways. For instance, because the factored
model improves the value of a policy more quickly, but value
then stops improving it would be interesting to learn the
factored model first and then use this policy to continue
learning with the flat model. This should decrease learning
time and increase solution quality. Also, we intend to ex-
amine more advanced reinforcement learning and machine
learning methods in general for strategy games. Techniques
that bias exploration towards more promising parts of the
state space and the use of feature extraction to learn the set
of features could improve the learning time and scalability
of our methods. We hope that others will also use our RL
toolbox for Civilization IV to explore more ways of using
reinforcement learning in this rich domain.

7. ACKNOWLEDGEMENTS

The authors would thank the members of the Machine

82

Learning and Applied Statistics group at Microsoft Research,
Redmond for their helpful comments on this work.

8. REFERENCES

[1] R.-K. Balla and A. Fern. UCT for tactical assault
planning in real-time strategy games. In Proceedings of
the Twenty-Second International Joint Conference on
Artificial Intelligence, Pasadena, CA, 2009.

[2] H. Chan, A. Fern, S. Ray, N. Wilson, and C. Ventura.
Online planning for resource production in real-time
strategy games. In Proceedings of the Seventeenth
International Conference on Automated Planning and
Scheduling, Providence, RI, 2007.

[3] T. Graepel, R. Herbrich, and J. Gold. Learning to
fight. In Proceedings of the International Conference
on Computer Games: Artificial Intelligence, Design
and Education, Reading, UK, 2004.

[4] T. Hester and P. Stone. Generalized model learning
for reinforcement learning in factored domains. In
Proceedings of the Fighth International Joint
Conference on Autonomous Agents and Multiagent
Systems, 2009.

[5] J. E. Laird and M. van Lent. Human-level AT’s killer
application: Interactive computer games. In
Proceedings of the Seventeenth National Conference on
Artificial Intelligence, 2000.

[6] M. L. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. Wiley-Interscience,
1994.

[7] F. Sailer, M. Buro, and M. Lanctot. Adversarial
planning through strategy simulation. In Proceedings
of the IEEE Symposium on Computational Intelligence
and Games, Honolulu, HI, 2007.

[8] T. W. Sandholm and R. H. Crites. Multiagent
reinforcement learning in the iterated prisoner’s
dilemma. Biosystems, 37:147-166, 1995.

[9] D. O. Stahl and P. W. Wilson. On players’ models of

other players: Theory and experimental evidence.

Games and Economic Behavior, 10:218-254, 1995.

R. S. Sutton. Dyna, an integrated architecture for

learning, planning and reacting. In Working Notes of

the 1991 AAAI Spring Symposium on Integrated

Intelligent Architectures, 1991.

R. S. Sutton and A. G. Barto. Reinforcement

Learning: An Introduction. MIT Press, 1998.

G. Tesauro and J. O. Kephart. Pricing in agent

economies using multi-agent Q-learning. Autonomous

Agents and Multi-Agent Systems, 5(3):289-304, 2002.

C. J. C. H. Watkins. Learning from Delayed Rewards.

PhD thesis, Cambridge University, Cambridge,

England, 1989.

C. J. C. H. Watkins and P. Dayan. Technical note:

Q-learning. Machine Learning, 8(3-4):279-292, 1992.

S. Wender and I. Watson. Using reinforcement

learning for city site selection in the turn-based

strategy game Civilization IV. In Proceedings of

CIG’08: IEEE Symposium on Computational

Intelligence and Games, Perth, Australia, 2008.

(10]

(11]

(12]

(13]

(14]

(15]

